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Abstract
In this paper, we study the symmetry known (Landau and Lifshits 1976 Course
of Theoretical Physics vol 1: Mechanics (Oxford: Pergamon)) as mechanical
similarity (LMS) and present for any monomial potential. We analyse it
in the framework of the Koopman–von Neumann formulation of classical
mechanics and prove that in this framework the LMS can be given a canonical
implementation. We also show that the LMS is a generalization of the scale
symmetry which is present only for the inverse square and a few other potentials.
Finally, we study the main obstructions which one encounters in implementing
the LMS at the quantum-mechanical level.

PACS numbers: 03.65.Ca, 11.30.−j

1. Introduction

We know that in classical statistical mechanics the probability densities in phase space
ρ(�r, �p, t) evolve with the Liouville equation

i
∂

∂t
ρ(�r, �p, t) = ˆ̃Hρ(�r, �p, t), (1)

where ˆ̃H is the so-called Liouville operator, which is built out of the Hamiltonian H(�r, �p) as
follows:

ˆ̃H = −i�∂pH(�r, �p) · �∂r + i�∂rH(�r, �p) · �∂p. (2)

In [2] Koopman and von Neumann replaced the space of probability densities ρ(�r, �p) with a
Hilbert space of states |ψ, t〉. Furthermore, they postulated for |ψ, t〉 the following evolution:

i
∂

∂t
|ψ, t〉 = Ĥ|ψ, t〉, where Ĥ = �λr · �∂pH − �λp · �∂rH. (3)
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In the previous equation �r, �p, �λr , �λp are operators [3] whose only non-zero commutators are
the following1:[

ri, λrj

] = iδij ,
[
pi, λpj

] = iδij . (4)

From the previous equation we see that �λr and �λp are canonically conjugated to �r and �p. In
particular, if we choose the representation in which �r and �p are operators of multiplication,
then �λ become the following operators of derivation:

�λr = −i�∂r , �λp = −i�∂p.

In this representation the abstract vectors |ψ, t〉 become functions of �r and �p and the abstract
equation of motion (3) becomes exactly the Liouville equation of motion for the state ψ(�r, �p):

i
∂

∂t
ψ(�r, �p, t) = ˆ̃Hψ(�r, �p, t). (5)

In the previous formula ˆ̃H is just the Liouville operator of equation (2). The equation of
evolution of the probability density (1) can be easily derived from the equation of motion (5)
and from the other main postulate of the KvN formulation, i.e. that the probability densities ρ

are the modulus square of ψ : ρ(�r, �p) = |ψ(�r, �p)|2. The geometric interpretation of all the
structures and of the auxiliary variables appearing in this approach was thoroughly studied in
[3, 4]. Here we want only to mention that the operator Ĥ of equation (3) is the Hamiltonian
vector field [5] associated with the standard Hamiltonian H. In general, starting from any
function of the phase space O(�r, �p) we can construct the associated Hamiltonian vector field
which in our formalism has the expression:

Ô ≡ λaω
ab∂bO = �λr · �∂pO − �λp · �∂rO,

where ωab is the symplectic matrix. Using equation (4) we can calculate the commutator
between a generic function of the phase space A and a generic Hamiltonian vector field O:

[A(�r, �p), Ô] = i∂aA(�r, �p)ωab∂bO(�r, �p) = i{A(�r, �p),O(�r, �p)}pb.

So we note that, modulo the factor i, we just get the standard Poisson brackets between A and O.
This should clarify the relationship between the formulation of classical mechanics (CM) in
the enlarged KvN space and that in the standard phase space.

It is clear from all this that we can choose other representations in the KvN Hilbert space.
For example, we can choose to represent the states |ψ, t〉 over the basis given by the eigenstates
of �r and �λp. In this case the KvN states become ψ(�r, �λp). They evolve with the equation of
motion (3) or via the following kernel of propagation [6]:

〈�r, �λp, τ |�r0, �λp0, 0〉 =
∫

D′′�rD �pD�λrD′′ �λp

× exp

[
i
∫

dt (�λr · �̇r − �p · �̇λp − �λr · �∂pH + �λp · �∂rH)

]
,

where the double prime in D′′ indicates that the path integral is over paths with fixed end
points. In particular, if we consider a Hamiltonian of the form H = p2/2 + V (�r) we get

〈�r, �λp, τ |�r0, �λp0, 0〉 =
∫

D′′�rD �pD�λrD′′ �λp exp

[
i
∫

dt (�λr · �̇r − �p · (�̇λp + �λr) + �λp · �∂rV )

]
.

Performing above the functional integral over �p we get a functional Dirac delta δ(�̇λp + �λr).
This means that we can perform also the functional integral over �λr by replacing everywhere

1 The reader should not be bothered by the fact that in this formalism [ri , pj ] = 0 because, after all, we are doing
classical mechanics.
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�λr with −�̇λp. In this way we can integrate away the canonical momenta conjugated to �r and
�λp to get the following path integral over the configurational variables:

〈�r, �λp, τ |�r0, �λp0, 0〉 =
∫

D′′�rD′′ �λp exp

[
i
∫

dt (−�̇λp · �̇r + �λp · �∂rV (�r))
]

. (6)

This is the main tool we will use in the next sections to study a symmetry called [1] mechanical
similarity. We will indicate it with the acronym LMS for Landau mechanical similarity even
if most probably it was introduced much before Landau. We will call it this way also to
distinguish it from another similar symmetry (see section 5 of [8]). The LMS, which in classical
mechanics holds for every monomial potential, turns out to be a natural generalization of the
standard scale symmetry analysed in [6]: the only difference is that in the LMS the variables
are not transformed according to their physical dimensions like in the scale transformations.
We will also prove in sections 2 and 3 that, while the scale symmetry can be implemented as a
canonical transformation both in the standard phase space formulation of classical mechanics
and in the KvN extended space, the LMS can be implemented as a canonical symmetry only in
the enlarged KvN space. This fact suggests that the LMS may be more easily implementable
at the quantum level if we first manage to formulate also quantum mechanics in the KvN
space. This had already been done in [7]. Unfortunately, as we will show in sections 4 and 5,
there are obstructions to implementing the LMS at the quantum level not only in the standard
formulation of quantum mechanics but also within the KvN space. This suggests that the LMS
is a symmetry peculiar of classical mechanics but which cannot be realized at the quantum
level; for more details see section 5. For this reason, we think that the LMS could play a role in
the study of the interplay between classical and quantum mechanics. Finally, in section 6 we
make a comparison between our approach and that of [9] on Newton-equivalent Hamiltonians.

2. A generalization of the scale symmetry

For a generic monomial potential V (�r) = g rn

n
the weight of the path integral (6) becomes

S̃ ≡
∫

dt (−�̇λp · �̇r + grn−2�λp · �r). (7)

Let us now suppose that we perform an infinitesimal rescaling of the time variable δt = −α̃t .
From (7) we see that, differently than in the standard action S = ∫

dt (ṙ2/2 − grn/n), we
can act not only on �r but also on �λp to get an invariance of the weight of the classical path
integral (6). It is easy to prove that the transformations:

δ�r = − 2α̃

2 − n
�r, δ�λp = nα̃

2 − n
�λp, δt = −α̃t (8)

leave unchanged S̃ of equation (7), so they are a symmetry for classical mechanics in the
KvN formalism. Of course, these transformations depend explicitly on the exponent n of the
monomial potential that we are taking into account. For n = −2 we have an inverse square
potential and the transformations (8) reproduce exactly the scale transformations analysed in
[6]. In this sense, we can say that equation (8) is a generalization of the scale symmetry. It is
well known that in the scale symmetry �r transforms according to its ‘physical’ dimensions [6].
This is no longer the case for the transformations in (8) but nevertheless, the transformations
(8) are an invariance for classical mechanics. If we apply Noether’s theorem and use the

definitions of the momenta canonically conjugated to �r and �λp, i.e. �λr = −�̇λp and �p = �̇r , see
equation (7), then we get the following charge which is conserved in the enlarged KvN space:

D = tĤ − 1

2 − n
(�λr · �r + �r · �λr) − n

2(2 − n)
(�λp · �p + �p · �λp). (9)
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In the previous formula we have symmetrized �r and �λr, �p and �λp, to have a Hermitian charge
under the standard scalar product in the KvN Hilbert space [10]:

〈ψ |τ 〉 =
∫

d�r d �p ψ∗(�r, �p)τ(�r, �p). (10)

Before going on, let us analyse two particular cases: first, let us take a harmonic oscillator,
i.e. n = 2. In the limit n → 2 the coefficients in front of the round brackets of equation (9)
tend to become equal and much bigger than the first term tH. So in the case of a harmonic
oscillator the charge D becomes roughly

D ∝ �λr · �r + �p · �λp. (11)

It is easy to prove that this charge commutes with the Liouvillian associated with a harmonic
oscillator Ĥ = �λr · �p − �λp · �r and, being independent of t, it is conserved. This same charge
plays an important role in one of ’t Hooft’s papers on the derivation of quantum mechanics
from dissipative deterministic systems [11]. As a second particular case, let us consider the
inverse square potential for which n = −2. In this case the conserved charge of equation (9)
reduces to the dilation charge that we found in [6]:

D = tĤ + 1
2 (�λp · �p − �λr · �r). (12)

This is another reason why the invariance that we have discovered in this section can be
considered as a generalization of the standard scale symmetry to which it reduces in the
particular case n = −2.

In the next section we will show that this symmetry manifests itself not only in the KvN
formulation but also in the standard approach to classical mechanics.

3. Landau mechanical similarity

A symmetry which in classical mechanics holds for every monomial potential, like that of the
previous section, was found long ago and presented by Landau in his book [1]. In this section,
we want to prove that the transformations (8) are just the KvN version of the transformations
found by Landau. He realized that every monomial potential V (r) = g rn

n
satisfies the equation

V (α�r) = αnV (�r), so if we send{
�r → α�r
t → α1−n/2t,

(13)

the standard Lagrangian changes by an overall factor

L = 1

2
ṙ2 − g

rn

n
−→ αnL. (14)

This implies that the classical equations of motion do not change under the transformations (13)
which, consequently, can be considered a symmetry for the classical system. Under the
transformations (13) the momenta �p = d�r

dt
change as �p −→ αn/2 �p. If we write α = eβ and

consider an infinitesimal β, then the variations of t and of the phase space variables turn out
to be

δ�r = β�r, δ �p = β
n

2
�p, δt = β

2 − n

2
t. (15)

It is easy to realize from the manner �r and �p transform that, except for the inverse square
potential (n = −2), the standard Poisson brackets {ri, pj } = δij are not preserved by the
transformations (15). This means that in the standard phase space formulation of classical
mechanics the LMS cannot be implemented as a canonical transformation.
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We want now to prove that the transformations (8) that we have found in the KvN space
reproduce exactly the LMS transformations of equation (15). Let us introduce a parameter α̃

defined as α̃ ≡ β(n−2)

2 , then equation (15) becomes

δ�r = − 2α̃

2 − n
�r, δ �p = − nα̃

2 − n
�p, δt = −α̃t. (16)

Note that the transformations on �r and t above are exactly the same as those in (8). In the
enlarged KvN space the momenta canonically conjugated to �r and �p are �λr and �λp respectively
as one can note from equation (4). This gives us the possibility of implementing canonically
in the enlarged space the transformations (16), provided we transform the conjugate momenta
�λ with opposite signs w.r.t. the ones which appear in equation (16), i.e.

δ�λr = 2α̃

2 − n
�λr, δ�λp = nα̃

2 − n
�λp. (17)

By ‘canonically in the enlarged space’ we mean that the transformations of equations (16)
and (17) preserve the KvN commutators (4) or the associated extended Poisson brackets (epb)

{ri, λj }epb = δij ,
{
pi, λpj

}
epb = δij , (18)

which were introduced in [3]. Note that the request of having a canonical transformation
in the enlarged space has generated in (17) a transformation for �λp identical to that present
in (8). This proves that the transformations we found in (8) are the KvN version of the LMS.
This also proves that, while the LMS in (�r, �p) space cannot be implemented canonically as
shown in (15), this obstruction is removed in the enlarged KvN space.

One last topic we want to present in this section is an extension of the analogy between
scale symmetry and LMS. It is known that the scale invariant inverse square potential is
invariant also under special conformal transformations [12] and under an entire set of Virasoro
charges [13]:

Lm = H

(
t +

D0

H

)1+m

, (19)

where D0 = −pq

2 and H = p2

2 + g

2q2 . These are the Noether charges associated with the

infinitesimal time transformation2 t → t − εtm+1. Lm of equation (19) are conserved as a
consequence of the following Poisson brackets {H,D0}pb = H . In fact it is easy to prove that
A ≡ t + D0/H is conserved:

d

dt
A = ∂

∂t
A + {A,H }pb = 1 +

1

H
{D0,H }pb = 1 − 1 = 0.

So the charges Lm of equation (19) are conserved because they are functions of conserved
quantities, such as H and A. We should note that all this construction is somehow formal and,
for example, for m < −1 the charges of equation (19) are not well defined for every t. This
anyhow will not change the conclusions of the paper.

A natural question to ask is whether it is possible to find, also for the LMS invariant
potentials analysed in this paper, further symmetries analogous to the special conformal and
the Virasoro algebras. The answer is yes. Using a notation analogous to that of equation (19),
let us call D0 the expression of the LMS charge of equation (9) at time t = 0. Combining H
and D0 we can build an entire set of Virasoro charges given by

Lm = H
(

t +
D0

H

)1+m

. (20)

2 As particular cases, for m = −1 we get an infinitesimal time translation and L−1 = H ; for m = 0 we get a scale
transformation and the Virasoro charge reproduces the usual dilation charge L0 = Ht − pq/2.
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These charges satisfy the following algebra: {Ln,Lm}epb = (m−n)Ln+m (see [13]). Using the
extended Poisson brackets (18) we have that {H,D0}epb = H which implies that all the charges
Lm of equation (20) are conserved under the evolution generated by H, i.e. d

dt
Lm = 0. The

proof is exactly the same as that for the charges Lm given above. The action of the classical
path integral (7) turns out to be invariant under the transformations generated by Lm via the
extended Poisson brackets (18), provided we transform time as δt = −εtm+1. Also in this
case for m = −1 we get the invariance under infinitesimal time translations and the conserved
charge (20) reduces to the Liouvillian H. When m = 0 we get instead the invariance of
the action of the classical path integral (7) under the LMS transformations and the Virasoro
charge (20) reduces to the LMS charge of equation (9).

So we can conclude that also the LMS invariant potentials present an infinite set of other
symmetries like the scale invariant potentials do [13]. A natural question to ask is whether these
extra symmetries manifest themselves also in the standard formulation of classical mechanics,
i.e., in the usual phase space (�r, �p) ≡ ϕ, or only in the extended phase space (ϕ, λ) of the
KvN formulation. To answer this question let us note that, among Lm, only L0 = tH+D0 and
L−1 = H are linear in the variables λ. This implies that, once we apply them on the space ϕ

via the epb (18), we end up again in the space ϕ:

ϕ −→ ϕ.

This means that we can implement and see these symmetries even in the standard phase space
(maybe in a non-canonical way, like the LMS). Acting instead with generators not linear in
λ, like all Lm (with m 	= 0,−1), the transformations on the space ϕ will bring us into the
(ϕ, λ)-space, as it is clear from equation (18), so

ϕ −→ (ϕ, λ).

This means that these symmetries cannot be implemented and seen in the usual phase space
(ϕ) but only in the full KvN space (ϕ, λ).

4. Quantum mechanics in the KvN Hilbert space

What we would like to understand in the next two sections is whether the LMS is preserved
after quantization, i.e. whether the LMS can be considered a symmetry also at the quantum
level. For simplicity, we will limit ourselves to the one-dimensional case in which we have
only one variable q, one variable p and their associated momenta λq and λp. The results can
be easily generalized to higher dimensions. As we have already seen in the previous sections,
the LMS can be implemented as a canonical transformation only in the KvN space. So it
seems natural to look for a corresponding quantum unitary transformation by implementing
also quantum mechanics (QM) in the KvN Hilbert space. This is not the Moyal formulation
of QM [14], but something different explored in [7]. In that paper one of us (DM) proved that,
by defining on the KvN Hilbert space the operators3

Q̂ ≡ q̂ − 1
2h̄λ̂p, P̂ ≡ p̂ + 1

2h̄λ̂q , (21)

one can reproduce the Heisenberg commutator [Q̂, P̂ ] = ih̄ and the whole algebra of quantum
observables by considering all the operators of the form f (Q̂, P̂ ) which are Hermitian
under the KvN scalar product (10). In particular, the quantum energy in the KvN space
becomes the operator H(Q̂, P̂ ) obtained by replacing the classical phase space variables q, p

with the operators Q̂, P̂ of equation (21). This H(Q̂, P̂ ) in general does not commute with

3 Note that these Bopp operators were also used in [15, 16] and later on also in [17]. In this last work these operators
interestingly appeared as constraints which gave rise to the polarization of geometric quantization [18].
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the Liouvillian. Nevertheless, the quantum energy is conserved if we modify the Liouville
equation as follows:

i
∂

∂t
|ψ〉 = Ĝ|ψ〉, Ĝ ≡ 1

h̄
[H(Q̂, P̂ ) − H( ˆ̄Q, ˆ̄P)], (22)

where ˆ̄Q and ˆ̄P are the following operators:

ˆ̄Q ≡ q̂ + 1
2h̄λ̂p, ˆ̄P ≡ p̂ − 1

2h̄λ̂q . (23)

It is easy to realize that equation (22) goes into the Liouville equation when h̄ → 0.
The abstract KvN states |ψ〉 appearing in (22) can be represented on the basis of our

choice. The one we will use from now on is made by the simultaneous eigenstates of the
commuting operators Q̂, ˆ̄Q which we will indicate with |Q, Q̄〉. The abstract states |ψ〉 then
become ψ(Q, Q̄) = 〈Q, Q̄|ψ〉. The action of the generic quantum observable F̂ ≡ (Q̂, P̂ )

on ψ(Q, Q̄) is given by

F̂ψ(Q, Q̄) = f

(
Q,−ih̄

∂

∂Q

)
ψ(Q, Q̄). (24)

If we consider the KvN Hilbert space as the tensor product of the Hilbert spaces spanned by
the two bases {|Q〉} and {|Q̄〉} respectively, then we can write the quantum observables as
F̂ ⊗ I. This immediately tells us that, since we are describing quantum mechanics in a Hilbert
space which is ‘bigger’ than the standard Hilbert space of quantum mechanics, there is a
redundancy in the physical description. A way to remove this redundancy is to find a subspace
of the whole KvN Hilbert space where the position Q̂ and the momentum P̂ act irreducibly
(for details see [7]). This non-trivial subspace Hχ can be built by making the product of
any normalizable wave function ψ in Q with a fixed wave function in Q̄, which we indicate
with χ(Q̄):4

Hχ =
{
ψ(Q)χ(Q̄) with

∫
dQ dQ̄|ψ(Q)|2|χ(Q̄)|2 = 1

}
. (25)

Because χ is fixed, Hχ is isomorphic to the standard Hilbert space of quantum mechanics
with the standard scalar product

〈ψ |ψ ′〉 =
∫

dQψ∗(Q)ψ ′(Q),

which is naturally induced by the scalar product (10). Note that all the Hilbert subspaces
Hχ , Hχ ′ ,Hχ ′′ , . . ., obtained by changing the fixed function χ are isomorphic to each other.
The quantum observables act on the KvN states as given by equation (24), so it is easy
to realize that they map vectors of (25) onto vectors of (25). Finally, note that, when we
restrict ourselves to the subspace Hχ (or to any of the equivalent subspaces), we have from
equation (22) that the function ψ(Q) evolves with the usual Schrödinger equation

i
∂

∂t
ψ(Q) = 1

h̄
H(Q̂, P̂ )ψ(Q).

For more details on this KvN realization of QM we refer the reader to [7].
Now that we have formulated quantum mechanics in the KvN Hilbert space let us go

back to the LMS symmetry. The natural question to ask in general is the following: how
can we implement a symmetry at the quantum level in this framework? As we have already
seen, the operator which generates the quantum evolution is given by equation (22). If we

4 This is quite similar to the procedure introduced by Ban in [19] and to the polarization procedure of geometric
quantization which in [17] was considered as the quantum analogue of a constraint in the enlarged phase space.
Another approach to geometric quantization which also started from the enlarged space was developed in [20].
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use definitions (21) and (23) then it is easy to see that the operator of equation (22) can be
written as

Ĝ =
∞∑

j=0

h̄2j

22j (2j + 1)!
λa1 · · · λa2j+1ω

a1b1 · · · ωa2j+1b2j+1∂b1 · · · ∂b2j+1H(q, p). (26)

This is basically the Liouville operator modified by an infinite set of corrections in increasing
powers of h̄. The change from the Liouville operator to Ĝ, which we performed for that
particular canonical transformation which is the time evolution, must be done for any canonical
transformation. What we mean is the following: if the function C(q, p) generates via the
Poisson brackets a certain transformation in the standard phase space formulation of classical
mechanics, then the same transformation is implemented in the KvN space via the Hamiltonian
vector field [5] associated with C(q, p), i.e. via Ĉ = λaω

ab∂bC(q, p) which plays the same
role that the Liouvillian played for the time evolution [3]. The operator which generates the
same transformation at the quantum level can be written in the same form of the operator Ĝ of
evolution of equation (22) but with the Hamiltonian H replaced by the function C:

Ch̄ ≡ 1

h̄
[C(Q̂, P̂ ) − C( ˆ̄Q, ˆ̄P )]. (27)

This is equivalent to modifying the Hamiltonian vector field with the corrections in h̄ given
by the following expression:

Ĉh̄ =
∞∑

j=0

h̄2j

22j (2j + 1)!
λa1 · · · λa2j+1ω

a1b1 · · · ωa2j+1b2j+1∂b1 · · · ∂b2j+1C(q, p). (28)

When we send h̄ → 0 we have that Ĉh̄ → Ĉ = λaω
ab∂bC, i.e. we just get the Hamiltonian

vector field associated with the charge C, which generates the symmetry at the classical level.
Expression (28) has appeared before in the literature [14] but not in a Hilbert space context.
Before concluding this section, let us note that, since Q̂ and P̂ commute with ˆ̄Q and ˆ̄P ,
the variation induced by Ĉh̄ on a function of Q̂ and P̂ is again a function of Q̂ and P̂ , see
equation (27), so the transformation does not bring us outside the space of the observables
f (Q̂, P̂ ).

Unfortunately things become more subtle when we consider the LMS symmetry. In
fact, as we have seen in section 3, the transformations of the LMS are not canonical in the
standard phase space of classical mechanics, so there is no function C(q, p) which generates
the transformations via the usual Poisson brackets. Consequently, we have no C(q, p) to put
into definition (28) of the charge Ĉh̄ which generates the transformations at the quantum level,
so we have to use a different strategy.

5. Mechanical similarity at the quantum level

Let us start by considering the LMS symmetry for the harmonic oscillator. In this case the
Hamiltonian H(q, p) is quadratic in q and p, so all the corrections in h̄ in the operator Ĝ of
equation (26) disappear. This means that the Liouvillian itself generates the evolution at the
quantum level. Let us also note that, as the charge of mechanical similarity of equation (11)
commutes with the Liouvillian, we can say that it is a conserved charge both at the classical
and at the quantum level, so we think that it may be this same charge which generates the
quantum LMS transformation. The associated unitary operator will be

U = exp[iα(λqq + pλp)]. (29)
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The reader may not be convinced that this is the full quantum operator and that h̄-corrections
should be present. We shall show later on for the general case that h̄-corrections will not
modify our conclusions. The transformations induced by U on the quantum position Q̂ and
the quantum momentum P̂ are

UQ̂U−1 = sinh α ˆ̄Q + cosh αQ̂, UP̂U−1 = sinh α ˆ̄P + cosh αP̂ .

From the previous equation we see that, by applying the transformations of the LMS on the
operators Q̂ and P̂ , we get linear combinations not only of Q̂ and P̂ , but also of ˆ̄Q, ˆ̄P .
In general, when we apply the LMS transformations (29) on a QM observable, which is a
Hermitian operator f (Q̂, P̂ ), we will get a new operator which depends also on ˆ̄Q and ˆ̄P ,
differently than what happened in the case of transformations of type (28). This means that the
LMS transformations bring us outside the space of the quantum observables. The same happens
for the physical states of the theory. In fact, let us rewrite the unitary transformation (29)
in terms of Q and Q̄:

U = exp

[
α

(
Q̄

∂

∂Q
+ Q

∂

∂Q̄

)]
. (30)

For an infinitesimal α we have that U can be rewritten as the following abstract operator in the
KvN Hilbert space:

U = I ⊗ I +
iα

h̄
[P̂ ⊗ ˆ̄Q − Q̂ ⊗ ˆ̄P ]. (31)

Let us now apply the unitary transformation (31) on the states belonging to the Hilbert space
of quantum mechanics Hχ , i.e. on the states of the form ψ(Q)χ(Q̄), with χ(Q̄) fixed [7].
From equations (30) and (31) we see that U contains explicitly operators which act on the
Hilbert space spanned by {|Q̄〉}, so when we apply the transformation U on a state ψ(Q)χ(Q̄)

we obtain that the form of the state χ(Q̄) gets changed. Not only, but in general we get a wave
function which is no longer separable, so we get a state which does not belong to any of the
equivalent subspaces of KvN space which are isomorphic to the Hilbert space Hχ of quantum
mechanics.

These considerations can be easily generalized to an arbitrary monomial potential. In this
case at the classical level the LMS in the KvN space is generated by the following unitary
operator derived from (9):

U = exp

[
iα

(
tĤ − 1

2 − n
(λqq + qλq) − n

2(2 − n)
(λpp + pλp)

)]
, (32)

which depends explicitly on the operator of evolution Ĥ. When we implement quantum
mechanics in the KvN space we know that we have to replace the Liouvillian Ĥ with the
operator Ĝ of equation (26). Since the classical Liouvillian appears in the classical charge of
mechanical similarity, the same replacement mentioned above has to be performed within the
unitary operator (32) which implements the LMS. Furthermore, let us keep open the possibility
of modifying the part of the operator U which does not depend on time t with corrections in h̄.
Consequently, the operator which should generate mechanical similarity at the quantum level
is, modulo further corrections in h̄, the following one:

U = exp

[
iα

(
t Ĝ − 1

2 − n
(λqq + qλq) − n

2(2 − n)
(λpp + pλp) + O(h̄)

)]
. (33)
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The infinitesimal transformations induced by U on the quantum position and momentum are,
modulo terms of order h̄,

UQ̂U−1 = αtP̂ − 2

2 − n
αQ̂ − n + 2

2(2 − n)
α( ˆ̄Q − Q̂)

UP̂U−1 = −αtgQ̂n−1 − n

2 − n
αP̂ − n + 2

2(2 − n)
α( ˆ̄P − P̂ ).

(34)

The previous equations tell us that, except in the case of an inverse square potential (n = −2),
the LMS transformations turn Q̂ and P̂ into combinations of not only Q̂ and P̂ but also of
ˆ̄Q and ˆ̄P . This implies that when we apply the transformations to the physical observables,

i.e. f (Q̂, P̂ ), we end up with functions that are no longer observables because they depend
also on ˆ̄Q and ˆ̄P . Let us note that this happens even if we add h̄-corrections as we did to the
operator U of equation (33). These corrections, in fact, cannot cancel the ( ˆ̄Q, ˆ̄P) terms in (34)
which are already present at h̄ = 0. Since the LMS brings every quantum observable outside
the space of quantum observables and the same happens for the physical states, we conclude
that the LMS cannot be implemented at the quantum level at least within the KvN space.

Of course, similar problems in implementing the LMS at the quantum level are present
also in more standard formulations of quantum mechanics. For example, let us try to realize
the LMS via a unitary transformation U = exp[iα̃Â/h̄] acting on the standard Hilbert space
of quantum mechanics. For an infinitesimal α̃ we get U = I + iα̃Â/h̄. So let us ask ourselves
whether, for a particular choice of the operator U or, equivalently, of the operator Â, the
transformations

q̂ ′ = Uq̂U−1, p̂′ = Up̂U−1

reproduce exactly the LMS transformations on the operators q̂ and p̂, which, from
equation (16), are

δq̂ = − 2

2 − n
α̃q̂ + α̃t

d

dt
q̂,

δp̂ = − n

2 − n
α̃p̂ + α̃t

d

dt
p̂.

(35)

If we neglect terms in α̃2 we have

Uq̂U−1 = q̂ +
iα̃

h̄
[Â, q̂], Up̂U−1 = p̂ +

iα̃

h̄
[Â, p̂]. (36)

To reproduce the terms of equation (35) which depend explicitly on time t we are forced to
consider an operator Â of the form Â = tĤ + Â0. The operator Â0 is determined once we
succeed in satisfying the following commutators with q̂ and p̂:

i

h̄
[Â0, q̂] = − 2

2 − n
q̂,

i

h̄
[Â0, p̂] = − n

2 − n
p̂. (37)

This implies that Â0 must have the form Â0 = αq̂p̂. In particular, the first equation tells us that
α̃ = − 2

2−n
and the second that α̃ = n

2−n
. This means that, unless we consider the case n = −2

(in which the LMS reduces to a scale transformation), there does not exist any operator Â0

which satisfies equation (37). In other words, it is impossible to implement the LMS via a
unitary operator acting on the standard Hilbert space formulation of quantum mechanics. If
we use the method of geometric quantization, looking at the polarization as a constraint on
the lines of the interesting work of [17], then the constraint polarization may be not invariant
under the LMS. We thank one of the referees for suggesting us this point and for pointing out
[21] where something similar happens.
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The problems in realizing the LMS at the quantum level can be understood in a more
intuitive way if we adopt the old Bohr–Sommerfeld quantization rules. In fact, remember
that at the classical level the LMS can be considered a symmetry because it just rescales the
Lagrangian (14), so it leaves unchanged the form of the equations of motion. This implies
that the LMS maps a solution of the classical equations of motion onto another solution of the
same equations. For example, in the case of a harmonic oscillator it maps an ellipse in phase
space onto another ellipse in phase space and if the transformation is infinitesimal it will map
an ellipse onto another one infinitesimally ‘close’ to it. Of course, things change when we
consider quantum mechanics. In this case in fact the Bohr–Sommerfeld quantization rules
impose that only some of the ‘trajectories’ are allowed:∮

dx p = (n̄ + 1/2)h, n̄ ∈ N. (38)

So when we apply an infinitesimal LMS transformation given by equation (15), we have that
the LHS of (38) changes by an arbitrary small quantity (except for n = −2). This infinitesimal
change, as n̄ is an integer, cannot be matched by a discrete change of n̄ on the RHS of (38).
The only way out would be the possibility of changing infinitesimally h but we know that QM
does not allow that. The reader may wonder that this reasoning of ours could be applied to
any infinitesimal symmetry and not just to the LMS. This is not true. In fact, it is only the
LMS, with its non-canonical form (15), that changes the LHS of (38).

Another way to realize that the LMS cannot be implemented at the QM level is to turn
to the standard path integral [22] formulation of QM which we will briefly indicate with its
generating functional:

Z =
∫

DqDp exp
[ i

h̄
S
]
. (39)

From the manner L of equation (14) changes under the LMS (13) we get that the action S
in (39) changes as

S −→ α(1+n/2)S.

This rescale can be compensated in the Z of (39) only by a change in h̄. In fact, even a change
in the measure

∫
DqDp cannot compensate the rescale of S. The reason is because the change

induced by (15) in the measure does not depend on the potential (except for the dependence
on n) while the rescale of S pulls in the entire form of the potential with its dependence not
only on n but also on the coupling constant g appearing in (14). So we conclude that only a
rescale of h̄ would make the LMS a symmetry at the QM level. We would like to stress that
the reason why the LMS is anomalous is different than in the standard Fujikawa approach. In
fact, in our case the weight itself of the quantum path integral turns out to be not invariant
under the LMS transformations, while in Fujikawa’s approach the anomaly was entirely due
to a non-invariance of the functional measure. We feel that the LMS, with its connection to a
rescaling of h̄, is quite unique and it may play a role in the interface between CM and QM. One
drawback of the LMS is that it is a symmetry of only the monomial potentials, so it cannot
play a universal role in the interplay between CM and QM. The research we are now pursuing
is to find a generalization of the LMS valid for any interaction, that means a transformation
which rescales the action for any potential. This would be a universal symmetry which is
never implementable in QM (because of h̄) but always present in CM and so it would really
mark the border between CM and QM. Some work has already been done in this direction [8].
The price that one seems to pay in order to get a universal symmetry is that the transformation
does not act on time t, like (13), but on some Grassmannian partners of time [3–8] whose
physical meaning is not yet clear. We are now trying to figure out how that symmetry [8]
could emerge in the standard formulation of CM and QM.
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6. Connection with Newton-equivalent Hamiltonians

The reader familiar with this kind of topics may like to compare what we did in this paper with
what people have done in the sector of ‘Newton-equivalent systems’ and their quantization
[9]. We will present here our understanding and interpretation of the work of [9]. If we
consider a particle of mass m in a potential V then the Newtonian equations of motion
are given by mq̈ = −V ′(q). These equations of motion can be derived from the standard
Lagrangian

Lst = m
q̇2

2
− V (q) (40)

or from any of the following equivalent Lagrangians:

Lγ = γ

(
m

q̇2

2
− V (q)

)
. (41)

Note that we get different momenta canonically conjugated to q, according to the different
values of γ :

pγ = ∂Lγ

∂q̇
= γmq̇ = γp. (42)

Performing the Legendre transform we get a whole set of equivalent Hamiltonians labelled
by γ :

Hγ (pγ , q; γ ) = p2
γ

2γm
+ γV (q). (43)

In particular, for γ = 1 equation (43) reduces to

Hst(p, q) = p2

2m
+ V (q), (44)

which is the Hamiltonian associated with the standard Lagrangian of equation (40). In [9] the
following Poisson brackets are imposed between q and pγ :

{q, pγ } = 1. (45)

Applying then the standard quantization rules on (45) the momentum becomes an operator
independent of γ , i.e. p̂γ = −ih̄ ∂

∂q
, while the Hamiltonian becomes the following

operator:

Ĥγ = − h̄2

2γm

∂2

∂q2
+ γV (q), (46)

which depends explicitly on the value of γ . This implies that both the eigenvalues and the
eigenfunctions of Ĥγ depend explicitly on γ . So at the quantum level the dynamics given
by Ĥγ is different than that given by Ĥ while it was the same at the classical level. We can
summarize what Calogero et al did in [9] in the following picture.

Newton

equations
�

���
Lst

Legendre tr.

Hst = p2

2m
+ V (q), {q, p} = 1

Hγ = p2
γ

2γm
+ γV (q), {q, pγ } = 1

� �

�
��� γLst

� Ĥγ

Ĥst

�

quantization
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In our formalism, apart from restricting V (q) to be a monomial, we have in common with
[9] the fact that our Lagrangian also rescales by a factor (14). In our case the transformation
from one Lagrangian to the other was obtained via some explicit transformation on q, p and
t (the LMS) while this was not the case in [9]. There they just postulated the two different
Lagrangians or Hamiltonians, without connecting them via a transformation. As we have
the explicit transformation we need to implement it also at the canonical level and not just
impose some Poisson brackets between p and q. What we get after the LMS transformation
is a Hamiltonian and a canonical structure different than that of [9]. This is outlined in the
scheme below:

LMS

�

Lst

Legendre tr. quantiz.
Hst = p2

2m
+ V (q), {q, p} = 1

H ′ = eβnHst, {q ′, p′} 	= 1

� �

eβnLst Ĥ ′ 	= UĤstU
−1

LMS not unitary

Ĥst

�
LMS not canonical

�

In the first column above the LMS transformations (15) on the position q and the
momentum p map the Lagrangian (40) onto the Lagrangian (41) with γ = eβn. After
having performed the Legendre transform on Lst the same LMS would map Hst = p2

2m
+ V (q)

onto H ′ = eβnHst, where n is the exponent of the monomial potential. If we consider
an infinitesimal parameter β and disregard terms of order β2 then the fundamental Poisson
brackets {q, p} = 1 are mapped onto

{q ′, p′} =
{
q + βq, p + β

n

2
p
}

= 1 + β
(

1 +
n

2

)
, (47)

which are different than those imposed between q and pγ of [9]. Transformations which change
the Poisson structure, like ours do, are known in the literature: they are called canonical but
not completely canonical in [23], or conformal symplectic transformations in [24]. If we
now try to quantize in the standard way we get that the LMS cannot be implemented via
a unitary transformation (see the previous section and the last arrow in the above scheme).
So, summarizing, by applying our LMS transformation we connect the two Lagrangians as
in [9]; nevertheless, if we start from Hst and {q, p} = 1 and apply a LMS, we do not get
the Hamiltonian Hγ and the Poisson brackets {q, pγ } = 1 as in [9]. We get instead the
Hamiltonian H ′ and the Poisson brackets {q ′, p′} = 1 + β

(
1 + n

2

) 	= 1. So the ‘canonical’
structure obtained in the procedure [9] and ours are totally different. As a consequence also
the quantum structure is different. While the authors of [9], having a canonical structure in
Hγ , can proceed to quantize, first we have to pass to a formalism in which the LMS can be
implemented canonically. That is the KvN formalism. This is summarized in the first row of
the scheme below:

quantiz.
Hst = λaω

ab∂bHst, {ϕ, λ} = 1

H′ = eα̃Hst, {ϕ, λ} = 1

�

Hst(Q̂
′, P̂ ′)

not observable

LMS unitary

Hst(Q̂, P̂ )

�
LMS canonical

�
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If we now quantize starting from the KvN formalism we get that the LMS brings us
outside the physical Hilbert space and the space of observables (see section 5 and the last
arrow of the above scheme). So the symmetry cannot be implemented at the QM level. To
summarize, the picture we get at the QM level is different from that of [9] just because the
‘canonical’ structure is different. We are forced on this canonical and quantum structure by
the fact that we have an explicit form of the transformation which rescales the Lagrangian
while this is not the case in [9].

We can conclude that, while in [9] the ‘symmetry’ of rescaling the Lagrangian cannot be
maintained at the quantum level, in our case it cannot even be implemented.
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